

distinguished from possible calibration inaccuracies. Over this $3\frac{1}{2}$ years maximum calibration deviations of 1.6 K and rms variations of 0.7 K have been observed. However, it must be pointed out that conditions during some calibrations were not ideal, and inaccuracies may have occurred which, in turn, caused a fictitious instability of the radiometer. Therefore, it is advantageous to recalibrate the instrument only when the climatic effects are small and sufficient time is available for a thorough and careful calibration procedure.

REFERENCES

- [1] W. N. Hardy, K. W. Gray, and A. W. Love, "An S-band radiometer design with high absolute precision," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-22, pp. 382-390, Apr. 1974
- [2] R. H. Dicke, "The measurement of thermal radiation at microwave frequencies," *Review of Scientific Instruments*, vol. 17, pp. 268-275, July 1946
- [3] M. E. Tiuri, "Radio astronomy receivers," *IEEE Trans. Antennas Propagat.*, vol. AP-12, pp. 930-938, Dec. 1964.
- [4] W. N. Hardy, "Precision temperature reference for microwave radiometry," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-21, pp. 149-150, Mar. 1973.

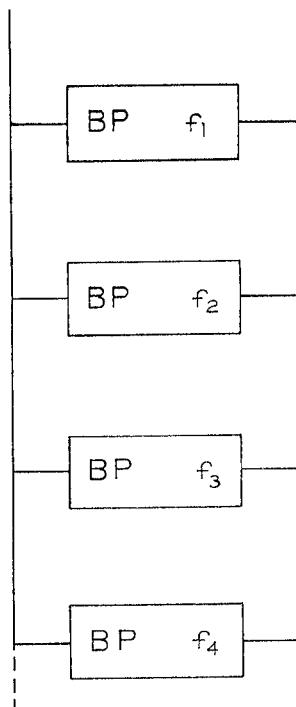


Fig. 1. Multicoupler block diagram.

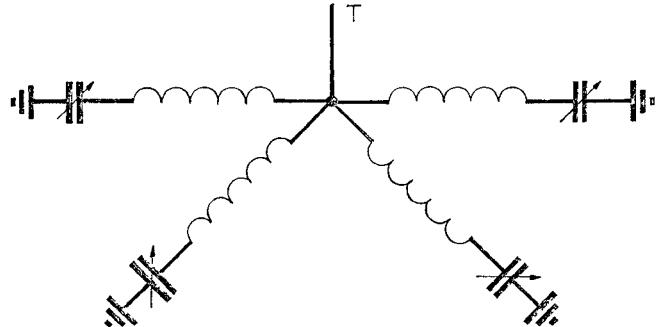


Fig. 2. Parallel combination of resonators

Resonant Cavities Used as Frequency Selective Phase Shifters

N. A. McDONALD

Abstract—An application of resonant cavities as frequency selective phase shifters in a multicoupler configuration is described.

When several bandpass filters are to be sequentially branched off a transmission line to form a multicoupler as in Fig. 1, some method has to be used to obtain, at the pass frequency of each bandpass filter, the correct impedance (usually an open circuit) immediately below the junction of that bandpass filter and the main transmission line.

Two common ways to achieve this are:

- to insert below each bandpass filter a bandstop filter tuned to the same frequency;
- to insert below each bandpass filter an adjustable phase shifter, and to terminate the main transmission line beyond the last bandpass filter in a short circuit or reactance.

This letter relates to an alternative configuration in which resonant cavities are used as frequency selective phase shifters beyond the last bandpass filter.

Consider the network of Fig. 2, in which all of the series resonant circuits are of high Q and independently tunable, and in

which each series circuit presents a high impedance at the junction T except in the vicinity of the resonant frequency of that circuit. If a signal at fixed frequency f_1 is applied to the transmission line above T and one of the series circuits is tuned through resonance at f_1 , the admittance that the series circuit presents at the junction T , in principle, passes through all reactive values. Accordingly the standing wave pattern at f_1 on the transmission line above T moves a distance of one-half wavelength and is therefore capable of presenting any reactive impedance at any point on the line above T .

Such a combination of resonant circuits acts as a frequency selective phase shifter having as many independently adjustable phase/frequency combinations as there are resonant circuits. If such a network is placed below the lowest filter in Fig. 1, the necessary impedance requirements can be met at the junctions between bandpass filters and the main transmission line. Although in principle the stopband impedances of the bandpass filters at the main transmission line are infinite, any residual reactances can be absorbed in the phase shift adjustment.

Manuscript received March 25, 1977.

The author was with Antenna Engineering Australia Pty. Ltd., Kilsyth 3137, Australia. He is now with the Royal Melbourne Institute of Technology, Melbourne, Victoria 3001, Australia.

This technique has been successfully applied to the design and construction of a 12-channel multicoupler in which each narrow band channel is independently tunable from 225-400 MHz [1]. The 12 tunable bandpass filters are connected to the main transmission line at physically convenient intervals. The frequency selective phase shift network, connected below the last filter, is obtained from the parallel connection of 12 tunable cavity resonators,

each of which is associated with one of the bandpass filters. Residual effects of bandstop filters in the main transmission line are avoided, and the required phase shift is independently adjustable for each bandpass channel.

REFERENCES

- [1] Australian patent 480994.

Contributors

Lynn R. Caldwell, photograph and biography not available at the time of publication.

*

Carl H. Durney (S'60-M'64) was born in Blackfoot, ID, on April 22, 1931. He received the B.S. degree in electrical engineering from Utah State University, Logan, in 1958, and the M.S. and Ph.D. degrees in electrical engineering from the University of Utah, Salt Lake City, in 1961 and 1964, respectively.

From 1958 to 1959 he was employed as an Associate Research Engineer with the Boeing Airplane Company, Seattle, WA, where he studied the use of delay lines in control systems. He has been with the University of Utah since 1963, when he was appointed to be Assistant Research Professor in electrical engineering. From 1965 to 1966 he was employed at Bell Laboratories, Holmdel, NJ, while on leave from the University of Utah. During this time he worked in the area of microwave avalanche diode oscillators. Again, in 1971, he was engaged in study and research involving microwave biological effects at the University of Washington while on leave from the University of Utah. He is currently Professor of Electrical Engineering at the University of Utah, where he is engaged in teaching and research in electromagnetics, engineering pedagogy, and microwave biological effects.

Dr. Durney is a member of Sigma Tau, Phi Kappa Phi, Sigma Pi Sigma, Eta Kappa Nu, and the American Society for Engineering Education.

*

Om P. Gandhi (S'57-M'58- SM'65) was born in Multan, West Pakistan, on September 23, 1934. He received the B.Sc. (Honors) degree in physics from Delhi University, Delhi, India, in 1952, and the Diploma in electrical engineering from the Indian Institute of Science, Bangalore, India, in 1955. Continuing his graduate studies at the University of Michigan, Ann Arbor, he obtained the M.S.E. and Sc.D. degrees in electrical engineering in 1957 and 1960, respectively. Subsequently, he worked on semiconductor

plasmas at the Philco Scientific Laboratory, Blue Bell, PA. From 1962 to 1966 he worked at the Central Electronics Engineering Research Institute, Pilani, India, first as Assistant Director and then as Deputy Director in charge of the Microwave Devices Group. Since 1967 he has been with the University of Utah, Salt Lake City, where he is a Professor of Electrical Engineering and Research Professor of Bioengineering with research interests in microwave and optical interactions in solids and microwave biological effects.

Dr. Gandhi is a member of Sigma Xi, Phi Kappa Phi, and Eta Kappa Nu.

*

Anand Gopinath (S'64-M'65) received the B.E. degree from Madras University, Madras, India, the M.Tech. degree from the Indian Institute of Technology, Kharagpur, India, and the Ph.D. degree from Sheffield University, Sheffield, England.

He was a Graduate Apprentice with A.E.I. (Manchester) Ltd., Manchester, England, and then worked as an Engineer with Jessop & Company, Ltd., Calcutta. Since obtaining his Ph.D. in 1965, he was, at first, Research Assistant at Sheffield University, and then became Lecturer in Electronics at the University College of North Wales, Bangor, Gwynedd, U.K., in 1966. He spent most of 1971, while on leave of absence from the University College of North Wales, at McGill University, Montreal, Canada. He originally worked in the heavy-current area, but over the past 12 years his interests have been, and are currently, in microwaves and solid-state devices. He has contributed several papers on various aspects of microstrip lines and microwave integrated circuits, and is active in this area. He also directs a research group which operates a scanning electron microscope in the stroboscopic mode up to 9 GHz for dynamic device studies and this has enabled Gunn domains to be observed in X-band